

Maersk Pilot Fuel Switch Initiative

Regulatory Affairs Technical Organisation

26 July 2007

Agenda

- → Applicability
- → Reasons
- → Projected Savings
- → Statistics & Emission Reductions Achieved
- → Fuel Switch Main Engine Type Maersk Owned Vessels
- → Fuel Switch Auxiliary Engine Type Maersk Owned Vessels
- → Fuels Carried Onboard
- → Fuel Availabilty
- → Crew Training
- → Challenges
- → Current Emission Reduction Initiatives
- → Contact Details

Applicability

- → All Maersk vessels calling California
- → Main & Auxiliary Engines to be changed over from 'bunker' fuel to LSDO with Sulfur content below 0.2%
- → Inbound 24 NM from Arrival Port for Main Engine and 24NM from California baseline (RCW) for Auxiliary Engines
- → In Port
- → Outbound 24 NM from Departure Port for Main Engine and 24NM from California baseline (RCW) for Auxiliary Engines
- → Commenced with Sine Maersk on March 31, 2006

Reasons

- → Maersk Lines response to the increased pressure to install Cold Ironing
- → Immediate emission reductions for the Ports of Los Angeles & Oakland
- → Mobile solution, rapid implementation
- → No expensive shore infrastructure required
- → Does not shift emissions to other power sources
- → Part of Maersk's ongoing evaluation of initiatives for environmentally responsible operation

Projected Savings

- → 400 Tons vessel-related emissions annually
- → 92 % reduction in Sox
- → 73 % reduction in PM
- → 10 % reduction in NOx

PAGE 6

Statistics - Emission Reductions Achieved

- → Number of vessels involved
 - → 78 From April 02, 2006 to May 04, 2007
- → Number of fuel switchings carried out
 - → 298 From April 02, 2006 to April 14, 2007 This number increases continually
- → Aggregate consumption of LSDO per switch
 - → 23.9 MT Total figure for both Main & Auxiliary Engine
 - → Data from April 02, 2006 to April 14, 2007
- → Reductions Achieved as compared to buring Residual Fuels
 - → Total Emissions: Around 800 TPY
 - → PM: 87%
 - → SOx: 95%
 - → Nox: 12% (includes use of Lo NOx mode in Aux Engines)
- → Data supplied by Environ

Fuel Switch – Main Engine – Maersk Owned Vessels

- → MAN B&W
 - → 12K90MC
 - → 10K90MC-C
- → Sulzer Wartzila
 - → 12RTA96C
 - → 12RT-flex96C
 - → 9RTA84C

PAGE 8

Fuel Switch – Auxiliary Engines – Maersk Owned Vessels

- → MAN B&W
 - → Holeby 7L32/40
 - → Holeby 8L28/32
 - → Hyundai 8L27/38
- → Sulzer Wartzila
 - → 6R32E
- → Daihatsu
 - → 6DK-32
- → MAK Caterpillar
 - → 6M32C

PAGE 9

Fuels Carried Onboard

- → Residual Fuels
 - → RMH 380 / 700
 - → RMK 380 / 700
- → Distillate Fuels
 - → DMX for Emergency Generator & Lifeboat Engines
 - → DMA
 - → DMB
- → Vessels equiped with separate service tanks for Residual and Distillate fuels
 - → Minimising incompatability problems

LSDO Availability

→ Handled By Maersk Bunker

→ USWC

- → Mainly Los Angeles & Oakland
- → No Problems in sourcing
- → Good Quality Inland Distillate
- → Main Supplier Chemoil Approx. 80% Volume Price Driven
- → Average Stem 200 MT

→ Far East

- → Japan Available Expensive
- → Singapore / Hongkong Difficult to source

→ Europe

→ Rotterdam - Difficult to source - Expensive when available

Crew Training

- → Crew advised to follow change over procedure as per engine manufacturer instructions
- → No special training provided
- → Change over considered 'Normal Engineering Practice'

Challenges

- → No problems encountered to date on vessels with regards to change over
- → Engines are only running on LSDO for short periods of time
- → In case of longer running, manufacturers suggest change over of Cylinder lubrication oil with lower Base Number

Current Emission Reduction Initiatives

- → Slide valves
 - → MAN main engines
 - → Improves the combustion process
 - → Reduces visible smoke and PM
 - → Less maintenance
 - → (less fuel oil consumption/CO2 emisson)
- → SIP cylinder lubrication system
 - → Reduces cylinder oil consumption
 - → Reduces PM emission
- → Waste Heat Recovery system
 - → 10% more mechanical energy output
 - → Large and complex installation
 - → 10% reduction in all emissions; SOx, PM, NOx & CO2
 - → Hot exhaust gas -> steam -> electricity -> electric motors

Current Emission Reduction Initiatives

- → Electronically controlled injection in engines
 - → Improved combustion in low-load condition
 - → No visible smoke less PM emission
 - → Less fuel oil consumption due to better combustion
- → Voyage Efficiency System
 - → Sharing of sea current data between ships
 - → Voyage optimization based on input from MET services, sea current and other sources
 - → Less fuel oil consumption due to less distance travelled at high speed
- → Maersk Ship Performance System
 - Monitoring of propeller efficiency
 - → Monitoring of hull efficiency
 - → Optimization of hull and propeller cleaning intervals
 - → Monitoring of trim optimization
 - → Monitoring of engine performance

Current Emission Reduction Initiatives

- → Selective Catalytic Reduction system
 - → Test installation on one aux. engine in one ship
 - → Monitored with regard to efficiency in port areas / low load situations
 - → Mixed results in combination with low-sulphur distillate operation
- → Emission & Energy Saving Project
 - → Identification of areas where fuel can be saved by optimization of processes
 - → Significant savings obtained by monitoring buffer time build up during transit

Contact Information

Jai K. Alimchandani
Manager, Regulatory Affairs
Technical Organisation
A.P. Moller – Maersk
50 Esplanaden
DK 1098 Copenhagen
Denmark

jai.alimchandani@maersk.com

+1 310 525 9454 +45 2361 3919